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The sensory properties and volatile composition of bread flavour were measured to allow improved
understanding of perceived bread freshness. Twenty bread varieties consisting of specialty breads
(n = 10) and commercial breads (n = 10) were evaluated by descriptive sensory analysis, and volatile com-
position of all breads was measured by proton transfer reaction mass spectrometry (PTR-MS). The spe-
cialty breads (n = 10) studied had been evaluated by consumers, and perceived freshness was known.
All sensory attributes and 33 mass ions representative of the PTR-MS spectra significantly (p < 0.05) dis-
tinguished between the different breads. Partial least squares regression (PLSR) was used to model and
predict sensory profiles as a function of volatile composition for all breads. In addition, a separate model
that related volatile composition to known consumer freshness of the 10 specialty breads was created.
For each model, accuracy was validated by comparing the differences between predicted and actual, sen-
sory and freshness intensities.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Fresh bread flavour is central to consumer acceptability and
product recognition. The flavour perception perceived while eating
involves complex interactions between sensory sensations of olfac-
tion, taste and trigeminal stimuli (Lawless & Heymann, 1999).
From this aspect, sensory descriptive analysis has been commonly
applied to measure the odour and flavour impressions of food
(Meilgaard, Civille, & Carr, 1999; Stone & Sidel, 2004). Among the
various intrinsic properties of bread, volatile flavour compounds
play a key role in the perception of fresh bread flavour. However,
the perceived fresh bread flavour often relies on the type of bread,
ingredients, method of production and shelf life.

Considerable research has focused on describing bread flavour
using descriptive sensory analysis (Caul & Vaden, 1972; Chang &
Chambers, 1992; Lotong, Chambers, & Chambers, 1999; Shogren,
Mohamed, & Carriere, 2003). Additionally, several studies have ap-
plied descriptive sensory analysis to describe consumer percep-
tions of different bread varieties (Hersleth, Berggren, Westad, &
Martens, 2005), effects of bread produced from different wheat
grains (Annett, Spaner, & Wismer, 2007), influences of processing
(Heinio, Liukkonen, Katina, Myllymaki, & Poutanen, 2003), as well
ll rights reserved.
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as influences of farming system, harvest, milling and baking
techniques (Kihberg, Johansson, Kohler, & Risvik, 2004; Kihlberg,
Ostrom, Jahansson, & Risvik, 2006). Heenan, Dufour, Hamid, Harvey,
and Delahunty (2008) showed that sensory characteristics from dif-
ferent bread varieties influenced consumer perceptions of freshness
and demonstrated that by relating subjective consumer freshness
judgements to descriptive sensory attributes from a trained panel,
an objective understanding of bread freshness could be obtained.

Research has been carried out on the flavour of fresh bread by
identifying key odour active volatile compounds (Chang, Seitz, &
Chambers, 1995; Kirchhoff & Schieberle, 2001; Schieberle & Gros-
ch, 1992; Seitz, Chung, & Rengarajan, 1998; Zehentbauer & Grosch,
1998a, 1998b). According to Schieberle and Grosch (1992), the loss
of fresh bread flavour results from specific compound volatility,
where important odourants rapidly decreased during storage,
whilst less desirable odourants characterised from lipid oxidation
remained relatively unchanged.

Sensory and instrumental volatile analysis has shown that dif-
ferent fermentation conditions and the amount of yeast, changed
the flavour profile for crust aroma of baguettes (Zehentbauer &
Grosch, 1998a, 1998b). Other studies have reported distinct differ-
ences between the headspace volatile composition of commer-
cially made breads that included white sandwich, Irish oatmeal,
soft rye, hearty rye, sourdough, home-like white and onion-basil
(Seitz et al., 1998), and between breads produced from different
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wheat varieties (Chang et al., 1995). More recently it was suggested
that consumer preferences for commercial wheat type baguettes
could be related to volatile compounds (Quilez, Ruiz, & Romero,
2006).

More than 300 volatile compounds have been identified from
bread (Pozo-Bayon, Guichard, & Cayot, 2006). Considering the
many varieties of bread that are available and the vast amount of
volatile compounds that exist, correlation of sensory character
with volatile composition is difficult. However, analysis of spectral
data from a rapid sensitive instrumental technique such as proton
transfer reaction mass spectrometry (PTR-MS) has demonstrated
the ability to model relationships between sensory attributes
(odour/flavour) and volatile composition (Biasioli et al., 2006).
PTR-MS provides the ability to measure the volatile composition
of food without pre-treatment enabling many samples to be ana-
lysed in a short period of time (Lindinger, Hansel, & Jordan,
1998). To date, this analytical technique coupled with multivariate
statistical analysis has been used successfully to characterise and
differentiate the volatile composition of cheese (Aprea et al.,
2007b; Biasioli et al., 2006; Boscaini, van Ruth, Biasioli, Gasperi,
& Mark, 2003; Gasperi et al., 2001), custard desserts (van Ruth,
De Witte, & Uriarte, 2004), infant formulas (van Ruth, Floris, &
Fayoux, 2006), truffles (Aprea et al., 2007a), olive oil (Aprea et al.,
2006), whey (Gallardo-Escamilla, Kelly, & Delahunty, 2005; Gal-
lardo-Escamilla, Kelly, & Delahunty, 2007), orange juice (Biasioli
et al., 2003), meat (Mayr, Margesin, Schinner, & Mark 2003b; Mayr
et al., 2003a), and whole strawberries (Granitto et al., 2007). More
recently, Lindinger et al. (2008) developed a predictive model for
flavour attributes of espresso coffee that linked PTR-MS measure-
ments and sensory profiling data. This approach enabled a rapid
characterisation of flavour for different espressos. There has been
no studies that have investigated sensory characteristics and vola-
tile composition of different bread varieties using PTR-MS analysis.
Hence, the opportunity remains to model and predict sensory attri-
butes of different bread varieties using measurements from a rapid
headspace PTR-MS technique.

The present investigation was carried out to characterise fresh
bread flavour by relating sensory characteristics defined by odour
and flavour attributes to volatile composition measured by PTR-
MS, of different bread varieties. In addition, known consumer
freshness perceptions from 10 specialty breads ( Heenan et al.,
2008) were related to their volatile composition. Relationships
were determined using partial least squares regression (PLSR)
modelling (Martens & Martens, 1986). The predictive ability of
multivariate models for determining sensory attributes and overall
consumer freshness perceptions from volatile composition was
validated and tested, using a subset of commercially available
bread types. In this study, relating volatile data from PTR-MS with
sensory analysis and known consumer freshness perceptions of-
fered a new and rapid technique to characterise and predict fresh
bread flavour.
2. Materials and methods

2.1. Bread samples

Twenty breads were selected to represent a range of different
breads that consisted of both specialty (n = 10) and commercially
branded (n = 10) varieties currently available in the New Zealand
market (Table 1). For descriptive analysis all samples were pro-
duced and purchased from local bakeries and evaluated within
4 h from baking on four separate days. Duplicates of each sample,
each from a different batch were presented in two sets of five on
separate days. Thus each panellist received 10 samples per session.
For each session, three loaves of each bread type (i.e. multigrain,
foccacia, white, sourdough, pugliese, Ciabatta, rye, commercial
mixed grain, commercial Swiss rye, commercial wheat, commer-
cial mixed grain, commercial whole wheat, commercial oat bran)
and six individual bread types (i.e. croissant, bagel, brioche, English
muffin, panini, baguettes) were produced and baked on a daily ba-
sis. A separate batch of breads was produced and baked for PTR-MS
analysis, and were analysed in triplicate within a single day. Simi-
lar to descriptive analysis, three loaves of each bread type and six
individual bread types from the same batch were produced and
baked on the day of testing. In terms of freshness, time of baking
was carefully chosen to ensure that all breads were equally fresh
at the point of evaluation.

From a prior study undertaken by the same authors (Heenan
et al., 2008), mean consumer freshness scores of the 10 specialty
breads was known (Table 1). Due to commercial sensitivity, the
branded bread (n = 10) varieties were labelled BR1–BR10.

2.2. Descriptive sensory analysis

A panel of 11 assessors (9 females, 2 males aged between 24
and 55 years) were trained following international standards
(ISO, 1993). The trained panel used a descriptive vocabulary that
encompassed 18 attributes for evaluating the bread odour (i.e.
dairy, yeasty, flour, grain, musty, nutty, malty, toasted) flavour
(i.e. sweet, salty, sour, bitter, buttery, oily, seedy) and after-flavour
(i.e. bitter, sour, toasted). Attribute definitions for odour, flavour
and after-flavour are described in Heenan et al. (2008). A 50 g por-
tion of each sample, including the crust and crumb, was presented
to assessors in 3-digit coded glasses covered with a glass cover, in a
balanced ordered design (MacFie & Bratchell, 1989). Assessments
were carried out in individual booths under white light at room
temperature. Two and 15 min intervals were allowed between
each sample and each set of five samples, respectively. For evalua-
tion, each assessor was provided with filtered water and un-salted
crackers and asked to cleanse their palate between tastings. In
addition, assessors received a list of attributes that included defini-
tions to aid in their assessments. Sample attributes were scored on
unstructured 100 mm line scales labelled from low at 5 mm to high
at 95 mm intervals. For each attribute, ratings on the unstructured
line scale were measured geometrically to produce intensity
values.

2.3. Volatile composition determination using PTR-MS

The volatile composition of each bread sample was measured in
triplicate using a high sensitivity PTR-MS instrument (Ionicon
Analytik, Innsbruck, Austria). All measurements were carried out
under drift tube conditions of 120–130 Td (Td = Townsend; 1
Td = 10�17 V cm2 mol�1) over a mass range of m/z = 20 to m/
z = 180 and a dwell time of 0.2 s mass�1, giving a cycle time of
32 s. Each bread type was cut into approximately
30 � 30 � 20 mm cubes and separately weighed (100 g) into 1 l
glass bottles (Schott Duran bottles, Germany) and allowed to equil-
ibrate at room temperature (�20 �C) for 1 h. Bottles were con-
nected to the PTR-MS inlet flow that was heated to 80 �C via
Teflon (0.25 mm) tubing and headspace air was sampled at a flow
rate of 50 ml/min. The headspace air was replaced by an equal flow
of pure air (BOC, New Zealand; purity; oxygen 21.999%, nitrogen
77.999%). Masses were analysed in a quadrupole mass spectrome-
ter and detected as ion counts per second (cps) by a secondary
electron multiplier (SEM). Sample measurements were performed
in six cycles resulting in an analysis time of 3.2 min. The mean of
cycles 2–6 were represented in further analysis. Background air
scans of five cycles were conducted from an empty bottle before
each sample measurement and the mean signal was subtracted
from the sample spectra (Aprea et al., 2007b). Mass ion intensities



Table 1
Bread products sampled and listed ingredients.

Sample Consumer perceived
freshnessa

Ingredients

Speciality breads
Multigrain 38.0 High Gluten Flour, Wholemeal Flour, Coarse Rye, Kibbled Rye, Buck Wheat Goats, Linseeds, Burghal Wheat,

Gluten Flour, Yeast, Milk, Water, Sugar, Salt, Butter
Croissants 67.6 High Gluten Flour, Yeast, Milk, Water, Sugar, Salt, Butter, Egg
Bagel 50.9 High Gluten Flour, Yeast, Milk, Water, Sugar, Salt, Butter
Foccacia 69.1 High Gluten Flour, Yeast, Milk, Water, Sugar, Salt, Olive Oil, Egg
White 53.9 High Gluten Flour, Yeast, Milk, Water, Sugar, Salt, Butter, Egg
Sourdough Loaf 37.1 High Gluten Flour, Wholemeal Flour, Yeast, Wild Yeast, Milk, Water, Sugar, Salt, Butter, Egg
Brioche 57.0 High Gluten Flour, Yeast, Milk, Salt, Sugar, Butter, Egg
Pugliese 55.9 High Gluten Flour, Drum Flour, Yeast, Milk, Water, Sugar, Salt, Butter
Ciabatta 54.2 High Gluten Flour, Yeast, Milk, Water, Sugar, Salt, Butter
Rye 65.1 High Gluten Flour, Wholemeal Flour, Refined Rye Flour, Yeast, Milk, Water, Sugar, Salt, Butter, Molasses

Commercial bread brands
BR1 (Whole grain) – Water, Wheat Flour, Kibbled Soya Beans, Linseeds, Mixed Grains, Wheat, Rye, Wheat Gluten, Vegetable Oil,

Yeast, Salt, Milk Solids, Vinegar
BR2 (English muffin) – Wheat Flour, Water, Yeast, Sugar, Wheat Gluten, Salt, Soy Flour,
BR3 (Swiss rye) – Water, Wholemeal Wheat Flour, Kibbled Rye, Wheat Flour, Gluten, Vinegar, Vegetable Oil, Milk Solids, Yeast,

Cultured Whey, Acidity Regulator
BR4 (White) – Wheat Flour, Yeast, Salt, Vegetable Oil, Soy Flour, Sugar
BR5 (Mixed grain) – Water, Wheat Flour, Mixed Grains, Wheat, Rye, Skim Milk Powder, Wheat Gluten, Salt, Vinegar, Yeast.
BR6 (Panini) – Wheat Flour, Water, Canola Oil, Olive Oil, Yeast, Sugar, Salt, Soy Flour
BR7 (Rye) – Water, Wheat Flour, Mixed Grains, Wheat, Rye, Kibbled Spelt, Flaxseed, Wheat Gluten, Kibbled Corn, Canola

Oil, Sugar, Yeast, Salt, Milk Solids, Vinegar, Malted Barley
BR8 (Whole wheat) – Wheat Flour, Kibbled Rye, Oat Bran, Yeast, Water, Wheat Gluten, Salt, Canola Oil, Soy Flour
BR9 (Oat bran) – Wheat Flour, Water, Oat Bran, Wheat Bran, Yeast, Sugar, Soy Flour, Gluten, Salt, Vegetable Oil
BR10 (Baguette) – Wheat Flour, Water, Gluten, Soy Flour, Malt Flour, Yeast, Salt, Sugar

a Mean values of freshness scores as reported in Heenan et al. (2008).
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were converted to concentration (pbbv) according to Lindinger
et al. (1998). Sample measurements were conducted over a 5 h
time frame from the first to the last sample. The order of sample
and triplicate measurements were randomised to account for pos-
sible changes in products volatile composition over time.

2.4. Data analysis

For each sensory attribute measured, a two-way analysis of var-
iance (ANOVA) with interaction was applied using SPSS 12.0.1
(SPSS Inc., Chicago, USA), to monitor assessor performance for
reproducibility and determine attributes that discriminated among
samples. Factors were set as fixed for bread type and replicate, and
random for assessor (Lundahl, 1990; Lundahl & McDaniel, 1988). In
addition, triplicate volatile mass ion concentrations from PTR-MS
measurements were analysed by one-way ANOVA. Attributes and
volatile compounds that did not significantly discriminate between
bread types were not included in further analysis. This reduction of
insignificant attributes and compounds ensured extraction of the
most relevant variables for more robust correlations to be investi-
gated. Post-hoc Tukey honestly significant difference (HSD) testing
(p < 0.05) was carried out on each data set (i.e. sensory and vola-
tile), to determine significant differences between pairs of samples
for sensory attributes and mass compounds.

Both sensory and volatile compound data sets were standard-
ised (1/standard deviation) and analysed by PCA using the
Unscrambler version 9.1 software (CAMO, AS, N-7041, Trondheim,
Norway). The purpose of standardisation in this case was to allow
for all variables to give equal influence to the PCA model, regard-
less of their original variance. In this study, standardisation en-
abled direct comparisons to be made between the two data sets
despite differences in their numerical range (Westad, Hersleth,
Lea, & Martens, 2003). One-way ANOVA was carried out on PCA
scores for both data sets to determine the number of principal
components (PCs) that significantly (p < 0.05) discriminated breads
using both sensory attributes and volatile compounds of the differ-
ent bread types prior to averaging across replicates.
Partial least squares regression type 1 (PLSR1) was used to inves-
tigate relationships between sensory attributes, known consumer
freshness perceptions and volatile composition (Martens & H.,
1986). To model sensory attributes as a function of volatile compo-
sition, 15 out of 20 bread types that represented the sensory and
volatile distribution of the breads tested were selected. Model per-
formance was tested (validated) by comparing actual and predicted
sensory attribute intensity scores for the remaining five commer-
cial bread types not used in the construction of models. In addition
and separately, known freshness evaluations from the 10 specialty
breads (Heenan et al., 2008) were related to volatile composition,
and predictions of freshness were made for the 10 commercial
breads not evaluated by consumers. PLSR1 was applied to create
separate models relating volatile components (X-variables) to sen-
sory attributes and freshness perceptions (Y-variables) one at a
time. Full cross validation was used to select the optimum number
of PLS factors for predicting the Y-data sets. The calibration and val-
idation coefficients that express model fit in X and Y, and ability to
predict new data were monitored. For each model the regression
coefficients (b-coefficients) were graphed to determine the contri-
bution of each X-variable in predicting Y-variables. Variables that
contributed little and/or displayed high levels of uncertainty esti-
mates were identified using the jack-knife method (Martens, Bre-
die, & Martens, 2000; Martens & Martens, 2000). Subsequent
models were recalibrated with non contributing X-variables re-
moved and final PLSR models were selected based on the root mean
square error of prediction (RMSEP). The RMSEP represents the aver-
age prediction error expected for new samples based on the same
units of measurements as the original response variables (sensory
attributes on a scale from 0 to 100 mm, and freshness on a scale
from 0 to 150 mm). In addition, RMSEP was used to study the rela-
tionship between modelling error and estimation error to deter-
mine the optimum number of PCs to be used.

PLSR models were used to predict the sensory attributes and
freshness intensities for all bread types, and for the five and 10
breads that were excluded when building the models. Comparisons
between actual sensory intensity and known freshness, and pre-
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dicted sensory intensity and freshness for breads were repre-
sented. To examine the linear relationship between the actual
and predicted values, Pearson correlation coefficients were calcu-
lated, thus providing a further means of model validation.
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Fig. 1. Results of Principal Component Analysis biplot showing the sensory
attributes of the specialty breads and commercial breads (BR1–BR10) for the first
two components.
3. Results and discussion

3.1. Descriptive sensory analysis

All sensory attributes used in descriptive analysis significantly
discriminated (p < 0.05) between the bread types tested. ANOVA
of PC scores, based on replicate evaluations showed that the first
five PCs significantly discriminated (p < 0.05) between the samples,
and accounted for 34%, 18%, 16%, 10% and 8% of the experimental
variance, respectively. The PCA clearly showed differences in the
sensory profile between the bread types and illustrated relation-
ships between sensory attributes. The first four PCs were repre-
sented in PCA biplots (Fig. 1a and b). Variance across PC 1 was
explained by differences between the sensory characteristics of
croissant, rye bread, and brioche along the positive axis, and com-
mercial breads BR5 (mixed grain), BR3 (Swiss rye) and multigrain
along the negative axis. Croissant and rye bread, described by sen-
sory characteristics of ‘‘dairy”, ‘‘malty” odour and a ‘‘sweet”,
‘‘floury” flavour were considered to be fresher by consumers (Table
1). Croissant and rye bread were produced from standard high glu-
ten wheat flour. According to Martinez-Anaya (1996), the carbohy-
drate content of standard wheat flour is easily broken down into
simple sugars during bread production, which influences the
occurrence of sweet, caramel and malty flavours during baking.
Subsequently, thermal reactions associated with freshly baked
bread, include caramelization and non-enzymatic browning, which
generate important volatile compounds such as furans, pyrazines,
pyridines, pyrol and Strecker aldehydes (Grosch & Schieberle,
1997; Pozo-Bayon et al., 2006).

In contrast, BR5 (mixed grain), BR3 (Swiss rye) and multigrain
were described as ‘‘musty”, ‘‘grainy”, ‘‘nutty” in odour, and ‘‘sour”
and ‘‘seedy” in flavour. Sensory characteristics of ‘‘musty”, and
‘‘sour” have been reported to influence the degree of freshness
for different Finish rye breads (Hellenmann, Tuorila, Salovaara, &
Tarkkonen, 1987), while ‘‘grainy” and ‘‘nutty” characteristics have
been shown to differentiate different types of sourdough bread
(Lotong et al., 1999) and wheat soy flour breads (Shogren et al.,
2003), respectively. BR5 (mixed grain), BR3 (Swiss rye) and multi-
grain all contained mixed whole grains, wholemeal flour and kib-
bled rye (Table 1). The outer bran layer of whole grains has been
shown to influence the perceived grainy cereal and bitter flavours
of bread (Chang & Chambers, 1992; Heinio et al., 2003).

Along the positive axis, PC2 was described by the attributes
‘‘yeasty”, ‘‘oily” odour and ‘‘salty”, ‘‘buttery”, ‘‘dairy” flavour, which
were present in foccacia bread. Along the negative axis of PC2
‘‘toasted” odour was present in commercial breads, BR9 (oat bran)
and BR10 (baguette). The ‘‘oily” flavour of foccacia bread could be
explained by its olive oil content. Additional PCs revealed further
sensory differences between the breads (Fig. 1b). PC3 distinguished
differences between the ‘‘sweet” flavour of rye bread and ‘‘sour”
after-flavour of bagel. PC4 showed that ciabatta, foccacia and com-
mercial bread BR10 (baguette) were similar in terms of ‘‘floury”
odour and ‘‘bitter” flavour, whilst croissant, multigrain and brioche
were similar in terms of ‘‘nutty” odour.

3.2. Headspace volatile composition of bread

One-way ANOVA identified 33 mass ions (m/z) 27, 29, 33, 43,
45, 47, 55, 59, 61, 63, 65, 69, 73, 75, 79, 83, 85, 87, 89, 91, 93, 97,
98, 101, 103, 105, 107, 111, 113, 117, 121, 125, 129) out of 160
masses measured that significantly (p < 0.05) discriminated be-
tween the bread types. In principal, a PTR-MS spectrum consti-
tutes, a ‘volatile-fingerprint’ for an individual sample. For
example, fresh samples of sourdough and brioche could be distin-
guished based on their headspace mass spectra (Fig. 2). Brioche
was shown to have relatively high concentrations of the masses
m/z 43, 87, 89 and 113, whilst sourdough comprised high concen-
trations of masses m/z 47, 75, 103, 105, 107, 125, 129. PCA illus-
trated product differences by volatile composition, on the basis
of mass ions that discriminated between the bread types (Fig. 3a
and b). ANOVA of PC scores, based on triplicate analyses showed
that the first five PCs significantly (p < 0.05) discriminated between
the samples, and accounted for 31%, 22%, 13%, 10% and 5% of the
experimental variance, respectively. Along the positive axis, PC1
was described by the masses m/z 55, 69, 103, 107 and 125, present
in relative high concentrations in sourdough and commercial
breads BR3 (Swiss rye) and BR8 (whole wheat). Along the negative
axis, masses m/z 83, 87, 113 and 117 were present in relative high
concentrations in brioche, foccacia and the commercial bread BR9
(oat bran). Commercial bread BR5 (mixed grain), along the nega-
tive axis of PC 2, was found to have relatively high concentrations
of masses m/z 33 and 45. PC3 distinguished ciabatta and foccacia
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Fig. 2. Headspace spectra averaged over three repeated measurements of: (a) brioche, and (b) sourdough.
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from rye bread, sourdough and pugliese bread, while PC4 sepa-
rated rye bread, sourdough and commercial bread BR5 (mixed
grain) from white bread and commercial breads BR4 (white) and
BR8 (whole wheat) (Fig. 2b). Separation along PC3 was due to
the relatively high concentrations of the mass ions m/z 117 and
m/z 89 along the positive axis, and m/z 129. PC4 could be explained
by mass ions m/z 101) and 113.

PCA of PTR-MS data, which accounted for 81% of the explained
variance, discriminated samples just as well as the sensory data,
where the first five PC’s significantly (p < 0.05) discriminated be-
tween breads. This finding signifies the complexity of the differ-
ences between the volatile composition of breads and by doing
so demonstrated the capability of the PTR-MS as a ‘chemical finger
printing’ technique. This finding supports previous empirical evi-
dence, where it was demonstrated that the latent structure in vol-
atile composition of whey (Gallardo-Escamilla et al., 2005), cheese
(Biasioli et al., 2006; Gasperi et al., 2001) and custard dessert (van
Ruth et al., 2004) samples determined by PTR-MS analysis were
similar to the latent structure in a trained panel’s cognitive percep-
tion of the respective samples. Under these circumstances relation-
ships between sensory and chemical data can be directly
investigated.

3.3. PLS modelling and prediction of sensory character and bread
freshness by volatile composition

Direct relationships between mass spectral finger prints and
individual sensory attributes were investigated using a subset of
15 fresh breads. Subsequently, predictive power of each model
could be tested using a validation set of five commercial breads
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Fig. 3. Results of Principal Component Analysis biplot showing mass ion intensities
of the specialty breads and commercial breads (BR1–BR10) for the first two
components.
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for which known measured sensory intensities could be compared.
Visual inspection of PCA biplots revealed that the 15 bread types
(ciabatta, sourdough, foccacia, brioche, rye, pugliese, white, bagel,
croissant, multigrain and commercial breads BR3 (Swiss rye), BR5
(mixed grain), BR4 (white), BR10 (baguette) and BR8 (whole
Table 2
Results of PLS1 regression between the mass ion signals (X-variables) and the sensory att

Sensory attribute Positive correlations Negative correla

O-Dairy 87, 97, 117 83, 91, 113, 121
O-Yeasty 29, 61, 79, 73 113, 33
O-Grain 63, 69, 85, 101, 107 27, 113
O-Musty 63,69,79,91,105 113
O-Malty 97, 98, 117 63, 113
F-Sweet 43, 97, 117 91, 121, 63
F-Sour 61, 63, 73, 85, 91, 105 27, 129
F-Bitter 45, 61, 75, 93, 111 59, 117, 129
F-Buttery 87, 93, 117 63, 91, 101, 111
F-Oily 79, 83, 101 63, 113
AF-Sour 61, 91, 93, 73 33, 59, 129
Freshness 55, 59, 87, 97, 117, 129 63, 69, 91, 93, 1

RMSEP, root mean squares of prediction; O, odour, F, flavour, AF, after-flavour.
wheat)) spanned both the sensory and volatile distribution reason-
ably well. In accordance with Helgesen and Naes (1995), these
samples accounted for the sensory and volatile distribution of
the first five PCs, which explained 86% of the explained variance
in the sensory data, and 81% of the explained variance in the
PTR-MS data, respectively. In addition, a separate model that re-
lated volatile composition to consumer freshness perceptions of
the 10 specialty breads was created.

Of the 18 sensory attributes measured, five odours, five flavours
and one after-flavour were found to be correlated to a subset of
mass ions (Table 2). Separately, consumer freshness perceptions
of the breads were correlated with a subset of 12 mass ions. Suc-
cessful regression models were recognised by calibration coeffi-
cients of P0.71, which expressed the strength of current models,
whilst validation coefficients, which represented the models ability
to predict new samples, were P0.63. Predictive performance was
based on minimum error in the root mean square error of predic-
tion (RMSEP) using full cross validation to select the optimum
number of PLS factors for predicting the Y-data sets. For sensory
attributes, the RMSEP values ranged from 4.70 to 9.13 (on the scale
which measured sensory intensity between 1 and 100 mm). The
RMSEP values obtained signified that all models had good predic-
tive ability for the sensory attributes of the 15 bread types upon
which models were built. Optimum model performance for
‘‘grain”, ‘‘yeasty” odours, ‘‘sweet” flavour, and ‘‘sour” after-flavour
were obtained using two PLS components, whilst the remaining
sensory attributes were better modelled using three PLS compo-
nents. However, for the sensory attributes of ‘‘floury”, ‘‘nutty”,
‘‘toasted” odours, ‘‘salty”, ‘‘seedy” flavours and ‘‘bitter”, ‘‘toasted”
after-flavours, calibration, validation and RMSEP values (not
shown) represented high variability, indicating poor model stabil-
ity, or inability to identify any mass ions related to these sensory
attributes. RMSEP for predictions of consumer freshness percep-
tions showed that the average uncertainty expected was 7.19,
based on freshness intensity measured on a 150 mm scale, indicat-
ing good predictive power for freshness of the 10 specialty breads
used in building the model. For freshness, optimum model perfor-
mance was achieved using two PLS components.

Taken collectively, PLS results revealed that ‘‘dairy”, ‘‘malty”
odours, and ‘‘sweet”, ‘‘buttery” flavours shared similar volatile pro-
files in terms of positively and negatively correlated masses m/z
87, 97, 117 and 63, respectively (Table 2). In comparison, the sen-
sory attributes ‘‘grain”, ‘‘musty” odours, and ‘‘sour” flavour shared
positively correlated masses of m/z 63, 69 and 91. In addition,
bread perceived to be most fresh shared a similar combination of
positively correlated masses, m/z 87, 97 and 117, also represented
by ‘‘dairy” odour and ‘‘buttery” flavour, whilst masses m/z 63, 69
and 91 that were negatively associated with bread freshness were
represented by the sensory attributes ‘‘grain”, ‘‘musty” odours, and
ributes (Y-variables) of the 15 selected bread types.

tions Calibration Validation RMSEP

0.96 0.88 7.13
0.71 0.65 5.26
0.85 0.70 9.13
0.94 0.84 5.68
0.83 0.79 8.71
0.96 0.80 6.13
0.91 0.73 6.14
0.89 0.63 3.29
0.93 0.81 5.31
0.90 0.81 4.70
0.89 0.75 6.32

01, 121 0.95 0.73 7.19
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‘‘sour” flavour. Volatiles that were possibly responsible for mass
ion signals could be tentatively assigned with reference to frag-
mentation patterns of pure compounds analysed by PTR-MS un-
der standard conditions (Buhr, van Ruth, & Delahunty, 2002;
Yeretzian, Jordan, & Lindinger, 2003). According to Buhr et al.
(2002) mass ion m/z 87 may originate from diacetyl, 2-methyl-
butanal or 2-pentanone, while Yeretzian et al. (2003) reported
that m/z 97 could possibly be assigned to furfural. Among these
volatiles diacetyl was assumed to be responsible for the ‘‘buttery”
odour associated with fresh bread flavour (Kirchhoff & Schieberle,
2001; Zehentbauer & Grosch, 1998b) and furfural has been previ-
ously described as having a brown, toasted flavour associated
with bread (Chang et al., 1995; Seitz et al., 1998) However, lack
of chromatographic separation of compounds limits the ability
of PTR-MS as a species-specific quantitative method of analysis.
In volatile mixtures, compounds and their fragments often share
the same observed signal for a particular mass ion, which compli-
cates the interpretation of PTR-MS spectra. It is important to note
that without analysis of compounds as standards, PTR-MS did not
definitively identify key chemical compounds found in different
bread types. The aim of this study was to demonstrate the appli-
cation of the data-driven technique for chemical finger printing as
opposed to chemical identification.

According to Martinez-Anaya (1996), no single volatile com-
pound can be considered the key component responsible for
bread aroma. From this perspective, volatile constituents act in
a synergistic way in relation to their relative proportions, which
in turn can be modified by other substances that are present in
breads (Richardmolard, Nago, & Drapron, 1979). Similarly, the
present study demonstrated that individual odour and flavour
attributes of bread depends on a mixture of specific volatiles. Sub-
sequently, the application of this approach may facilitate a better
understanding of the proportions and even absence of volatiles
that elicit particular sensory characteristics, which in turn influ-
ence bread freshness. However, it is important to stress that cor-
relations between individual sensory attributes and mass ion
intensities, does not necessarily imply causality. Hence, models
represented in this study should be interpreted as showing asso-
ciations rather than direct cause and effect relationships. PLS1 in
this study extracted the most relevant mass ions for predictive
performance. Using a similar approach to determine relationships
between PTR-MS fingerprints of volatile mixtures present in Tren-
tingrana cheese and their sensory attributes, Biasioli et al. (2006)
showed good modelling performance with PLS1.

Model predictions for sensory attribute intensities, alongside
measured sensory intensities, are presented in Table 3. In addi-
tion, model predictions for consumer freshness perception inten-
sities and measured freshness perception intensities are shown
for the 10 specialty breads, while predicted freshness intensities
are represented for the 10 commercial breads not evaluated by
consumers. Pearson correlation coefficients are shown, which
indicate the strength of the correlation between measured and
predicted intensities. These have been calculated for samples
used to build PLS models, and separately for samples not included
in the building of models (validation).

Measured and predicted sensory intensity were very well cor-
related (r > 0.88) for samples that were used in the construction
of models for all attributes apart from ‘‘yeasty” and ‘‘sour-after-
flavour”. On the other hand, the predictive ability of models for
new samples (samples not included in built models) varied. Mod-
els for the attributes ‘‘dairy”, ‘‘grain” and ‘‘musty” odour, ‘‘bitter”,
‘‘buttery” and ‘‘oily” flavour had good predictive ability (r > 0.72).
However other attribute models did not perform as well and
those for ‘‘yeasty” odour and ‘‘sweet” flavour had very poor pre-
dictive ability. This result could be explained by the robustness
of models and the type of breads used for validation. Commercial
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bread BR6 (panini) deviated the most from measured to predicted
sensory intensity. In this case, BR6 will have been somewhat of an
outlier in terms of the relationship between its volatile composi-
tion and sensory character, due to the presence or absence of
compounds that can influence the overall perception of the
mixture.

Measured and predicted freshness were very well correlated
(r = 0.96) for the 10 specialty breads that were used in building
the perceived freshness model. In this case, freshness was not mea-
sured for the commercial breads BR1-BR10, and so the predictive
ability of the model could not be externally validated. Commercial
sample BR5 (mixed grain), and to some extent BR10 (baguette),
showed considerably low levels of predicted freshness intensities
when compared with the other commercial breads. In this instance
it is important to note that consumer freshness perceptions for
these breads may have been influenced by sensory sensations
other than odour and flavour. Previous work that related sensory
attributes to consumer freshness perceptions demonstrated that
‘‘porous” appearance positively influenced freshness, whilst ‘‘adhe-
sive” texture was negatively associated with bread freshness (Hee-
nan et al., 2008).

Overall, these results demonstrated that the volatile informa-
tion used to build the current models had direct relevance on the
sensory attributes perceived by the trained panel. Furthermore,
volatile profiling by PTR-MS demonstrated promising opportuni-
ties in determining bread freshness that may be used as a rapid
technique to predict whether newly developed bread products will
be perceived by consumers as fresh at the time of sale.

4. Conclusion

The research clearly showed that volatile information acquired
by PTR-MS analysis can be applied to model and characterise the
sensory properties of different bread types. In addition, PTR-MS
can be used to predict consumers’ perceptions of the freshness of
different bread varieties that are all equally fresh in terms of
elapsed time from baking. PTR-MS analysis and sensory evaluation
enabled the selection of 15 breads that ensured a good representa-
tion of both the sensory and volatile composition of bread types
and allowed predictive models to be built. Sensory attribute pre-
diction model validation using a subset of five samples provided
a robust measure of each models predictive power. Clearly, the re-
sults of this study showed promising opportunities for rapid profil-
ing and screening of bread sensory quality and with a view
towards the perceived freshness of bread.
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